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Abstract: The contribution to the intensity of Rayleigh scattering from a pair of units j,k of a chain molecule is 
shown to be proportional to exp(—iJ.2{rjh

2)/6), the Gaussian approximation to the Fourier transform of the distri­
bution function for the vector rjk connecting these scattering units (e.g., CH2); here n = (4rl\) sin (9/2), 6 being 
the scattering angle. Higher order, non-Gaussian terms are unimportant in the Fourier transform of the distri­
bution function throughout the range of y. within which the groups may legitimately be treated as point scatterers. 
Realistic values of (rjt

2) must be used, however. In particular, the customary assumption of proportionality of 
(rjh

2) to I; — k\ must be abandoned for shorter sequences, i.e., for \j — k\ < ca. 200 bonds in the case of poly-
methylene chains. Scattering functions P(/n) for «-alkanes have been computed by summing the exponentials 
given above over all pairs j,k, the (rih

2) having been evaluated by rigorous statistical-mechanical methods. Average 
radii of gyration (s2) = (n + l)-22M(/>2) and the analogous sum of fourth moments (n + I)-2SsiK{rjk

l) have been 
computed as functions of chain length n using matrix methods recently developed which are applicable without 
approximation to the rotational isomeric state model. These sums provide the coefficients in the series expan­
sions of P(n) and of P~K^) for terms in /u2 and ^4. These and other approximations for the scattering function are 
compared with the more exact sum of exponentials cited above. The approximate Debye equation P(fi) = (2/u2) 
[v — 1 + exp(—v)] for molecular scattering is rendered remarkably accurate, even for short chains in the case of 
polymethylenes, by redefining v as M2C?2) > where s* is the radius of gyration of the finite chain of length, n. 

I n 1915 Debye1 published his well-known relationship 
expressing the angular dependence of the intensity of 

Rayleigh radiation scattering by a system of identical, 
rigid molecules, mutually independent and randomly 
oriented in space, as a sum over all pairs of atoms of the 
molecule (see eq 1). Each term of the sum is deter­
mined by the distance rjk of separation of atom pair j,k, 
the atoms being treated as point scatterers. Chain 
molecules in general and macromolecules in particular 
do not conform to the condition of rigidity. A system 
of such molecules presents, at a given instant, an array of 
configurations in which the distances rjk vary over wide 
ranges from one molecule to another. The formulation 
of appropriate averages becomes necessary. Either of 
two procedures may be pursued: averages for the 
individual terms in the Debye sum may be sought and 
these averages summed, or the argument of the Debye 
equation may first be expanded in series and the sums 
over j,k of successive terms of the series subsequently 
averaged over the distribution of configurations (cf. 
below). Which procedure is the more appropriate will 
depend on the size (i.e., chain length) of the molecule in 
relation to the wavelength A of the radiation and the 
scattering angle d. 

Regardless of the choice of procedure, distribution 
functions for the distances rik are required. Thus, 
Rayleigh scattering by the system of chain molecules is 
intimately related to their conngurational statistics, as 
was emphasized by Debye2 in 1947. Over the ensuing 
20 years, the use of light-scattering measurements as a 
means for characterizing the spatial configurational 
characteristics of macromolecules has gained wide­
spread acceptance. Possibilities for extending the 
information to be gained from light scattering through 
use of X-rays have been indicated, notably by Kratky.3 

The ultimate utility for this purpose of X-ray scattering 
by dilute solutions of macromolecules remains to be 

(1) P. Debye, Ann. Physik, 46, 809 (1915). 
(2) P. Debye, J. Phys. Chem., 51, 18 (1947). 
(3) O. Kratky, Pure Appl. Chem., 12, 483 (1966). 

fully realized, however. A limitation has been im­
posed by inadequacies of approximations used in the 
past for treating the configurational statistics of pairs 
j,k of scattering elements separated by numbers of 
bonds which are small compared with the total chain 
length. Various models for chain molecules have been 
employed for this purpose, e.g., freely jointed chains, 
worm-like chains, and freely rotating chains. None is 
universally applicable to real chains of finite length, nor 
to pairs of scattering elements j,k of finite range within 
chains whose over-all length may be very great. 

The inherent physical artificiality of these models 
poses an objection to their use which is more serious 
than the limitations of the mathematical functions they 
prescribe for various properties of the configuration 
distribution. (For example, the moments (r,*2) and 
(r^) are not generally represented satisfactorily for 
all values of | j — k\by any of these models.) Structural 
geometry, hindrances to rotation, etc., in the real chain 
cannot be transcribed, uniquely, to parameters of the 
model chains. The necessary correspondences do not 
exist. Hence, in adopting an artificial model, one severs 
connection with the very characteristics of the real 
chain which it is the purpose of theory to relate to the 
property (e.g., Rayleigh scattering) observed. Or, 
conversely, the legitimate object of the experiment may 
be to ascertain the relative energies of different confor­
mations, for example, of the real chain. Expression of 
the results in terms of parameters of an artificial model 
thwarts achievement of this objective. 

Newer methods4'5 obviate resort to artificial models 
for treating real chains of finite length. The average 
(equilibrium) properties of real chains are now suscepti­
ble to quantitative treatment, without approximation 
other than the adoption of the rotational isomeric state 
scheme, which closely simulates the conformational 
character of the real chain and has broad precedent in 
the interpretation of small molecules. Molecular quan-

(4) P. J. Flory, Proc. Natl. Acad. Sci. U. S., 51, 1060 (1964). 
(5) P. J. Flory and R. L. Jernigan, / . Chem. Phys., 42, 3509 (1965). 

Journal of the American Chemical Society j 90:12 / June 5,1968 



3129 

tities of principal interest can be averaged over the 
configurations of the rotational isomeric chain by 
mathematical methods which are exact for chains of any 
length. 

Here we present relationships for calculating the 
statistical mechanical averages of quantities required by 
the Debye equation for its application to Rayleigh 
scattering by real chain molecules of any length, and 
over the entire range of wavelength and scattering angle. 
Illustrative calculations are reported for polymethylene 
chains H-(CH2),,+i-H. Numerical results are compared 
with approximate formulas. 

Theory 
The Scattering Factor. The Debye scattering factor 

P(B) = 1(d)11(0) expresses the intensity 1(8) scattered at 
an angle 8 from the incident beam to the intensity 1(0) 
scattered in the direction (8 = 0) of the incident beam. 
For a system of rigid molecules disoriented at random, 
it is given by1 

P(d) = 1(0)/J(O) 

= (» + I)-2Z(A^*)-1 sin (jirJk) (1) 
l.k 

where rjk is the distance between scattering elements j 
and k and M is the difference between the scattered and 
incident wave vectors k and k0, i.e. 

H= |k - k0| = (4TT/\) sin (812) (2) 

where X is the wavelength of the radiation in the scatter­
ing medium. The double sum in eq 1 includes all 
scattering elements (e.g., CH2 groups); n + 1 is the 
number of such scatterers, n being the number of skeletal 
bonds joining them in the chain molecule. Chain 
elements are assumed to act as point scatterers. The 
solution in which the molecules are dispersed is taken to 
be sufficiently dilute so that the distribution of the 
molecular centers over space is uncorrelated and there­
fore random. Contributions of individual molecules to 
the total scattered intensity are thus assured to be 
independent and additive. The series obtained2 by 
expanding the sine functions in eq 1 is 

P(6) = P(M) = (n + I ) - 2 E(I - M'/V3! + 

MVV/5! - •••) (3) 

The result obtained by averaging eq 1 over all con­
figurations of the chain molecule is 

/>(M) = (1(8)11(0)) = (» + I)- 2E(G^*)- 1 sin (u.rlk)) (4) 
}.k 

where angle brackets denote the statistical mechanical 
average of the quantity enclosed therein. Letting 
W(rlk) represent the distribution of vectors r]k, we have 

((ViItY1 sin (M>>)> = I Oo*) - 1 s i n (M>>) X 

4*VW(r,*) d/> (5) 

= J sxp(ifjL-rjH)W(rjk) dr,* (6) 

Equations 5 and 6 are alternative expressions for the 
Fourier transform of W(rlk). Hence, we may utilize 
a series developed by Nagai6 for the Fourier transform 

(6) K. Nagai, J. Chem. Phys., 38, 924 (1963). 

of the distribution function of the end-to-end vector. 
After replacement of the end-to-end vector by rjk, 
we obtain 

((MO*)"1 sin ( M ^ ) ) = exp(-M2(0*2)/6)[l - (1/8)(1 -

iMI5(r^Y)(»W)iiy + ...] (7) 
This expression is a series in the even moments of the 
pair distances rjk multiplied by the Fourier transform 
of the Gaussian distribution. In the limit \k — j \ -*• » , 
only the leading term remains in eq 7. 

For values of M2V*V)/3 much in excess of 2, 
the magnitude of ((i±rjk)-

1 sin (fj.rjk)) is rendered 
small by the exponential factor in eq 7. At this point 
the second term of the series in brackets in eq 7 is 

-(1/2Xl - 3</V>/5</>2>2) 

Its contribution is significant compared to unity only 
if the quantity in parentheses is of the order of 0.1 or 
greater. For polymethylene \j — k\ must be less than 
about 25 bonds in order for 3(r*)/5(r2)2 to depart 
from unity by such an amount.7 For chain sequences 
of this length (r2

lky
/s is only ca. 20 A or less. Scat­

tering experiments affording information on distances 
in this range must of course be carried out with X-rays; 
i.e., the required values of M can in practice be covered 
only through use of radiation in the X-ray range. 
The foregoing root-mean-square inter-unit distance 
of 20 A is to be compared with a mean diameter of 
the polymethylene chain of about 5 A. Obviously, 
the approximation of the scattering elements (CH2, 
for example) as point centers when rjk is as small as 
20 A is no longer valid. We conclude that, for any 
combination of parameters validating the approxima­
tion of the scattering groups by point scatterers, omis­
sion of higher terms of the series in eq 7 will certainly 
be justified for a random-coil chain molecule having 
a tortuosity comparable with, or not much less than, 
that of polymethylene. Only for very stiff chains of 
intermediate length, e.g., for poly-L-proline, may cir­
cumstances arise where higher terms than those spe­
cifically included in eq 7 will be needed. 

In fact, for most flexible chains it will be justified, 
within the limitations of the point-scattering approxima­
tion, to replace the series in brackets in eq 7 by unity 
under all conditions (i.e., for any feasible M), giving 

((MO*)-1 sin (ixrjk)) = exp(~M2<o*2>/6) (8) 

and 

P(ix) = (n + I ) - 2 E exp(-M2(0*2)/6) (9) 
i,k 

This result was obtained by Debye2 and it has been 
used by Kratky, Porod, and coworkers8 in their treat­
ment of X-ray scattering of chain molecules. These 
expressions are tantamount to representation of W(rjk) 
in the Gaussian approximation. It is known from 
previous analysis7 of the series for the Fourier trans­
form of W(r), where r = ron is the end-to-end vector 
for the entire chain, that conditions for compliance 
with the Gaussian form, eq 8 and 9, for the Fourier 
transform are less stringent than for W(r) itself to be 
Gaussian. 

(7) R. L. Jernigan and P. J. Flory, submitted for publication; R. L. 
Jernigan, Thesis, Stanford University, 1967. 

(8) S. Heine, O. Kratky, G. Porod, and P. J. Schmitz, Makromol. 
Chem., 46, 690 (1961). 
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For small values of M accessible in light-scattering 
experiments, the exponent in eq 9 is appreciably large 
only for long chains, thereby leading to a dependence 
on 6 which is contributed primarily by segment pairs 
at long average separations. With X-ray scattering, 
i.e., large M> terms in the sum in eq 9 are significant 
only if j and k are at small separations. 

For sufficiently large values of \j — k\ (greater than 
about 200 bonds for polymethylene), it is legitimate 
to assume proportionality between (r2

jk) and \j — k\, 
provided that the chain is unperturbed by volume ex­
clusion or other long-range interactions. Under these 
conditions we have 

(rjk
2) S* ml2({rm

2)/mP)m^ = ml\{r2) JnP)n^ (10) 

where m = \j — k\. Substitution in eq 9 and simplifica­
tion of the series gives 

PGO = (« + I ) - 1 + 2/(« + \y £ (n - m + 1) X 
m = 1 

exp 
-^mP ((f) 

MP 
(H) 

Replacement of the summation in eq 11 by integration 
yields 

In 

{(« — v) exp(—v) + n(v — 1) exp(— v/n)} (12) 

where v is defined by 

" 6 U2A- (13) 

Some of the error introduced by assuming (rjk
2) to 

be proportional to \j — k\ may be compensated by rede­
fining v as 

v = M2C?2) (14) 

where (s2) is the mean-square radius of gyration for 
a chain of length n. Alternatively, in the limit of in­
finite chains eq 14 could be replaced by 

v = MV 2 >/6 (15) 

In eq 14 and 15, (s2) and (r2) are to be assigned 
their values for the finite chains of length n; asymptotic 
values for the ratios (s2)jnl2 and {r2)jnl2 are not 
implied. Equation 14 would be expected to compensate 
the error introduced by the integration better than does 
eq 15. Confirmation of this expectation will be 
demonstrated later. 

Debye2 has derived a limiting form of eq 12 by 
deleting terms which are small when n » 1 and n » v. 
Consequently, his equation should be valid for long 
chains and small values of M- His result is 

PQi) = (2/v2)[v - 1 + exp(-c)] (16) 

In the domain of small M and large n, this equation is 
expected to perform more satisfactorily than eq 12 
because most of the terms neglected are negative. 
Hence, their omission partially compensates the error 
introduced by the integration. 

Equations 12-16 are strictly valid only for chains 
at the Q point, i.e., when they are free of long-range 
perturbations associated with the excluded volume 

effect. However, these equations should remain ap­
proximately valid for perturbed chains, provided that 
perturbed values of (s2) or {r2) are used. 

The series expansion of eq 16 is 

POi) = 1 - (2/3!)p + (2/4!)^2 -

(2/5!)»' + (2/6!>4 - ••• (17) 

and its reciprocal is 

P-IQx) = 1 + p/3 + p*/36 -
i<3/540 - D4 /6480 + • • • (18) 

It should be noted that the approximation of propor­
tionality, eq 10, between (rm

2) and m = \j — k\, which 
is required to integrate over the separation of scattering 
elements, is much less realistic than the assumption 
that W(jjk) is Gaussian in form. The two approxima­
tions are essentially unrelated. Therefore, eq 9 should 
be more widely applicable than eq 11, 12, or 16. 

By returning to eq 4 and performing a series expan­
sion of the sine function, one obtains 

PQi) = 1 - (2/31)S2M
2 + (2/5!)S4M4 ~ 

(2/7!)S6M6 + 

where 

0 9 , J2P = (n + I)-2 E (rjk
2p) 

0<j<k<n 

(19) 

(20) 

The first of these sums is just the average square radius 
of gyration, i.e., S2 = (s2). Equation 19 may be 
written alternatively as follows 

POJ.) = 1 - P/3 + (3S4/20S2
2)(LV3)2 -

(3S6/280S2
3)(»/3)3 + • • • (19') 

where we choose to define v according to eq 14; i.e., 
v = IJ-2S2. In the limit of infinite chains, eq 19 con­
verges to eq 17, provided that long-range perturbations 
which would vitiate eq 17 are not operative. Direct 
correspondence of terms in eq 17 and 19 leads to the 
limiting values of S2p as follows 

lira s,, - SL±>2 w 
«-.» (p + 2)! 

(for 1 < p) (21) 

For small M> e-g-> optical scattering, usually the 
quantity considered is the inverse scattering factor. 
Inversion of eq 19 yields 

P-1CM) = 1 + (S 2 /3 )M 2 + (S2
2/9 - S 4 /60)M 4 + 

(S2
3/27 - S2S4/90 + S 6 /2520)M 6 + • • • (22) 

or 

p-i(M) = 1 + [VjI) + (1 - 3S4/20S2
2)(y/3)2 + 

(1 - 3S4/10S2
2 + 3S6/280S2

3)((;/3)3 + • • • (22') 

In analogy to the expression of the Fourier transform 
of the distribution function W(rjk) as its limiting Gaus­
sian exponential multiplied by a series in the even 
moments of rik, we may factor out the limiting form 
of P(M) given in eq 16, thereby obtaining 

POi) = (2/v2)[v - 1 + exp(-p)] X 

/ s6 
\42S2

3 3S2
2 3 + (23) 
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Derivation of the Required Sums Over Moments of 
the Distribution. Equations 19, 22, and 23 express the 
angular dependence of the scattered intensity as power 
series in sin2 (8/2). The practicality of these equivalent 
renditions of .PGu) depends of course on the convergence 
of the series, which in turn is dependent in first ap­
proximation on the magnitude of the quantity S2/u

2 

= [A-K sin (0/2)]2(s2)/\2. In general, the root-mean-
square radius of gyration (s2)'A must be less than 
about A/10 in order for the series to converge satis­
factorily for values of B up to 150°, the usual range 
for light-scattering measurements on polymer solutions. 
Determination of the extent to which the third terms 
(i.e., the terms which are quadratic in /x2, or in sin20/2) 
of eq 19 and 22 contribute relative to the second terms 
requires evaluation of S4 in addition to S2 = (s2). 
The method for the calculation of these quantities is 
outlined below. 

The rotational isomeric state model9 replaces the 
continuous range of rotational angle about a given 
bond by several discrete angles, judiciously chosen. 
The bond is treated as if restricted to adoption of one 
or another of these rotational states to the exclusion 
of all other angles. The states are generally so chosen 
as to coincide with minima in the rotational hindrance 
potentials. The validity of such an approximation 
for alkane chains has been amply demonstrated for 
treatment of a variety of properties.10-14 The number 
of states is taken to be three, in conformity with the 
threefold potential for a -CH2-CH2- bond. The 
states may be located at 0° (trans), 120° (gauche+), and 
240° (gauche-). Small departures of the potential 
minima from these positions are easily compensated 
by minor adjustments of statistical weight parameters14 

(cf. below). Bond rotations exhibit an interdependence 
which is conveniently taken into account by assignment 
of statistical weights to pairs of rotational states. The 
set of statistical weights for a given bond pair is ap­
propriately presented in the form of a matrix, with 
rows indexing the rotational state of bond i — 1 and the 
columns indexing the state of bond i. The configura-
tional partition function Z is readily generated by taking 
the serial product of such matrices, i.e. 

Z = J*U!(B)J 

where J* is a 1 X ^ row composed of unity followed 
by v — \ zeros, v being the number of rotational states 
and therefore the order of Vj. J is the v X 1 column 
of ones; the notation ( )I (B) signifies the serial product 
of n terms, the first possessing serial index 1. By con­
densation of previous results5'15 for (r2), we have for 
the mean-square distance between chain elements j 
andk 

(rJk
s) = 2Z-1J*U1

(%g>+i(*^')(BU* + 1
c '!-*)J (24) 

where supermatrices Q, (B, and g are defined by 

(9) M. V. Volkenstein, "Configurational Statistics of Polymeric 
Chains" (English translation), Interscience Publishers, Inc., New York, 
N. Y., 1963. 

(10) C. A. J. Hoeve, / . Client. Phys., 35, 1266 (1961). 
(11) K. Nagai and T. Ishikawa, ibid., 37, 496 (1962). 
(12) W. J. Leonard, Jr., R. L. Jernigan, and P. J. Flory, ibid., 43, 2256 

(1965). 
(13) A. Abe, R. L. Jernigan, and P. J. Flory, J. Am. Chem. Soc, 88, 

631 (1966). 
(14) R. L. Jernigan and P. J. Flory, J. Chem. Phys., 47, 1999 (1967). 
(15) K. Nagai, ibid., 47, 2052 (1967). 

a = [E, o---o] 

"0 

(B = 

and 

& = 

0 
LE,. 

'U (V®\T)\\T\\ (/2/2)U" 
0 (UOE3)IiT[I UOl 
0 0 U 

(25) 

E is the unit matrix of order denoted by its subscript; 
<g> denotes the direct product; Tj is the matrix that 
transforms quantities expressed in the coordinate sys­
tem based upon bond j + 1 into their representations 
in the coordinate system related to bond./; |J || is an 
operator which forms a diagonal supermatrix from a 
matrix which is a function of the rotational angle. 
For example 

IF = 

-F(I) 

F(K)J 

The bond vector is represented as 

Ii = IJ 

The subscript appended to matrices as in eq 25 and 
elsewhere designates the index of all serially dependent 
quantities within the matrix. As required by eq 20, 
S2 is the sum of terms given by eq 24 over all values of 
j and k. An extension of the matrix method used to 
generate </2} yields an exact result for S2. 

S2 = l(n + l)-2Z-1J*a§i(M)(BJ (26) 

where 

Si = 

"u ag (/2/2)U" 

o g g® 

0 0 U 

(27) 

In eq 26 the factor fi extracts the first v rows (i.e., the 
first super-row) of the product of S factors, and the 
factor (B rejects all but the final v columns of these 
rows. Thus, only the right-most of the three terms 
in the first super-row of the serial product SI(M) is 
retained. It is easily verified that the second super-
element of etSiw-1) always contains terms which are 
collected, after multiplication by one more S matrix, 
into the position from which the answer is extracted. 

In a completely analogous manner5'16 

(O*4) = 4Z-1J*U1
(%3C,-+i(*-J',(BU* + i

("-* )J (28) 

with Xj defined by the matrix shown in eq 29. From 
eq 28 it follows by analogy with eq 24, 26, and 27 that 

(16) The condensation of the previous formulation5 of the fourth 
moment to eq 28 and 29 will be published elsewhere. 
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(29) 

the sums required by eq 20 for S4 are generated by 
the following matrix multiplications 

(30) S4 = 4(n + I)-2Z-1J* a(Ri(B)(BJ 

where 

(R,- = 
u ax <74/4)u" 
0 X K(B 
0 O U 

(31) 

Numerical Calculations for Polymethylene Chains 

The statistical weight matrix for alkane chains14 is 

u,- = 
1 a a 

1 a ace 

1 aoi u 
for 1 <j<n (32) 

With gauche rotational states chosen at ±120°, the 
appropriate statistical weights14 are a = exp(—500 cal 
mole- ' / i i r) and u = exp(-2000 cal mole-7JRJT). 
Matrices U for terminal bonds are to be represented 
by the identity, i.e., by Ui = Un = E„. Throughout 
the calculations presented below, all skeletal bond 
angles Z CCC were taken to be 112°, and a temperature 
of 140° was adopted. Figure 1 depicts the dependence 
of S2 and S4 on chain length. For comparison, results 

— 

_ / 

- / / 

I 

/ j ^ - " " ' ^ " 
jS Z / ^ 

I 

a 
b 
C 

d 

! 

«i-2>/n)/«r2>/n)«, 
( .S2 /n)/(S2 /n)» 
K r ^ / n ^ / K r ^ / n ' ) -
(S^/rtf/CS^/n'J-

~ 

-

-

Figure 1. Reduced moments (r2)jn, S2In, etc. calculated for 
w-alkane chains, plotted against the number n of skeletal bonds. 
The reduced moments are divided by their values in the limit n-+ & 
in each instance. 

of calculations of (r2) and (r4) on the same basis 
are also presented. All quantities are plotted as dimen-
sionless ratios: ((r2)/n)/((r2)/n)n^a, (S2/«)/(S2/«)M-*.=, 
«/•*)/« 2)/«r4)/«2)K-^, and ( S 4 / K 2 ) / ( S 4 / K 2 ) M _ , each of 
which converges to unity for n = » , 

The order of decreasing rates of convergence is 
(r2)/n, Si/n, (r^/n2, S4/n\ The relationship be­
tween (r2)jn and S2/« parallels that between <>4)/ 
n2 and S4/n

2, as should be expected from the fact that 
S2 and S4 are equivalent sums of the second and fourth 
moments of r. Because of the presence in these sums 
for a given chain length of a large number of moments 
for shorter sequences whose ratios have not reached 

their limits, the convergence of S2 and S4 is more pro­
tracted than the convergence of the corresponding 
moments of r. The slower convergence of higher 
moments with chain length as compared with lower 
moments was observed previously for other types of 
molecules as well as for artificial chain models.7 

Numerical evaluation of S2 and S4 for finite chains 
furnishes the coefficients of v and v2 in eq 19', 22', 
and 23. The sufficiency of these terms with neglect 
of higher ones in the several series bears examination. 
The convergence of each series depends on the ratios 
Si/Sn2, SzJS2

3, etc., whose limiting values for n -*• a> 
(see eq 21) are 5, 42, etc., respectively. The ratio 
S4/5S2

2 plotted against n in Figure 2 converges slowly 

Figure 2. The ratio SJSS2
2 calculated for short /7-alkane chains. 

to its limiting value of unity for n = &, but it exceeds 
0.8 for all values of n beyond the sharp minimum 
at n = 2. Numerical values of higher sums S2p for 
short chains (n < 10), which were obtained by calculat­
ing S2p for every allowed configuration and then sum­
ming with appropriate weights, show the ratios S6/ 
42S2

3, etc., likewise to be near their limits even for 
small n. 

It follows from these observations that the series 
for P~Kn) given by eq 22' (or by eq 22) converges more 
rapidly than the series for P(n) given by eq 19' (or 
by eq 19). The series in eq 23 converges much more 
rapidly than either as will readily be apparent from com­
parison of corresponding coefficients of the respective 
series. Moreover, the coefficients of powers of v in eq 
19' and 22' approach constant values with increase in 
chain length n, but those of the series in eq 23 vanish 
with increase in n. The latter series therefore con­
verges more rapidly the greater the chain length. In 
fact, for polymethylene chains of length n > 10, all terms 
beyond unity of the series in eq 23 may be neglected 
for values of v of the order of unity or less. This range 
of v includes light-scattering experiments and indeed 
any experimental situation suitable for determination 
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Figure 3. Plots of /x2P(/x), variously calculated, against /i2 for a 
polymethylene (»-alkane) chain with n = 10: curve 1, eq 9 with 
the (r,k2> calculated for sequences of \j — k\ units; curve 2, eq 22 
truncated at term in M2 (or v); curve 3, eq 16 with v = n2(s2) 
(eq 14); curve 4, eq 12 with c = ^2(s2); curve 5, eq 16 with v = 
fi2(r2)/6 (eq 15); curve 6, eq 22 truncated at term in M4 (or v2); 
curve 7, eq 11; curve 8, eq 19 truncated at /u2 (or v); curve 9, eq 
19 truncated at y.4 (or c'). 

of the moments of the molecule as a whole. Higher 
terms in eq 23 may play a more important role for stiffer 
chains, e.g., for poly-L-proline.17 

In Figure 3 we show the results of calculations of the 
scattering factor, plotted as ju 2P(M) against /X2, for a poly­
methylene chain of only n = 10 skeletal bonds (n-unde-
cane). The chain length is too low to justify the point-
scatterer approximation, but the choice serves to ac­
centuate differences between the various approxima­
tions. Curve 1 has been calculated according to eq 9 
by taking the sum of exponentials over all pairs j,k. In­
asmuch as calculations7 show (r,-*2) for a sequence of 
specified length m — \j — k\ to depend very little on the 
length of the chain of which the sequence is a part, or on 
its location in the chain, the (r^2) were equated to the 
(rn

2) for a finite sequence m in an infinite chain. In 
fact, the ratio (rm

2)jml2 for a sequence of m bonds 
within a polymethylene chain of great length closely 
approximates the corresponding ratio (r2)/nl2 for an 
independent chain of the same number of bonds, i.e., 
with n = w.7'18 This representation of the scattering 
factor is the most accurate, for reasons given above. It 
is essential, however, to avoid the substitution (rjk

2) 
= \j- k\((r*)lnl*)n-.a. 

Curves 2 to 9 in Figure 3 represent other approxima­
tions for P(fi) as specified in the legend to this figure. 
The Debye equation (16) with v defined by eq 14 is 
shown by curve 3. This identification of v with n2-
(s2), where (s2) is the radius of gyration calculated 
for n — 10, is unprecedented in previous treatments of 
Rayleigh scattering. Equation 26 yields the requisite 
numerical values of (s2) for chains of finite length. 
Curve 5, calculated from eq 16 with v given by eq 15, is a 
less satisfactory approximation to curve 1. Surpris­
ingly, the unabridged eq 12 with v defined by eq 14 of­
fers a poorer approximation (curve 4) than eq 16 ob-

(17) P. R. Schimmel and P. J. Flory, Proc. Natl. Acad. Sci. U. S., 58, 
52 (1967). 

(18) K. Nagai, /. Chem. Phys., 45, 838 (1966). 
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Figure 4. The reciprocal of the scattering function, Pitt)'1, plotted 
against /J.2 for chains of length n = 10. See legend for Figure 3 
for identification of the curves numbered 1, 2, 3, and 6. Curve 10 
represents eq 23 truncated after the term in v2. The value of S2 
used as required here and in Figure 3 is 11.2 A2. 
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Figure 5. Reciprocal scattering function for an «-alkane chain 
with n = 263. Numerals identify curves calculated as specified 
in the legends to Figures 3 and 4. Si is 668 A2. 

tained from eq 12 by omission of terms in \\n (curve 3). 
Terms of lower order in n are of course included in eq 11, 
shown by curve 7. Yet, this curve departs markedly 
from curve 1. The disparity arises in large part from 
the error in taking (r^2) to be proportional to \j — k\ 
in calculating curve 7. Truncation of eq 22, or 22', for 
P~\n) after the second term offers the best approxima­
tion (curve 2) to curve 1 for this very short chain. In­
clusion of the term in p.A, or v2, yields the less satisfac­
tory curve 6. Truncation of eq 19, or 19', for P(y.) at 
the second or third term results in curves 8 and 9, re­
spectively, which depart markedly from curve 1 at large 
values of yu2. 

In Figure 4, curves 1, 2, 3, and 6 from Figure 3 are 
plotted as P~\ix) against JJ.2. Also included is curve 10 
representing eq 23 truncated after the second term of the 
series. It shows the largest deviation from curve 1 for 
n-undecane. 

Similar calculations for a polymethylene chain con­
sisting of 263 bonds are shown in Figure 5. The scat­
tering factor obtained by taking the sum of Gaussian 
terms in eq 9 should be subject to a negligible error in 
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Figure 6. The relative intensity, nP(/i), per scattering element 
calculated by eq 33 for polymethylene in the limit « - • = » , plotted 
against n2. 

yond that normally covered in experiments on molecular 
scattering. Higher values of v were included in these 
calculations in order to accentuate differences between 
the various curves. 

For very long chains measured at finite values of /x2 

such that ju2(s2) » 1, the pairs j,k which contribute 
appreciably to the scattering function are those for 
which \j — k\ « n. The intensity 1(6) per scattering 
element observed at an angle 8 > 0 is proportional to 
nP(fx), and it is independent of the subdivision of the 
Nn scattering elements into separate molecules, subject 
to fulfillment of the conditions stated. 

According to eq 9 with approximations appropriate 
in the limit n -*• =° 

nP(ix) = n - ' E e x p C - M 2 ^ 2 ) ^ ) = 

this case. It is again shown as curve 1; numeration 
of other curves corresponds to their designations in 
Figures 3 and 4. The Debye equation (16) with v de­
fined by eq 14 (curve 3) offers the best approximation to 
curve 1. The series for P _ 1 (M) is slightly less satisfac­
tory for this longer chain; curves 2 and 6, representing 
this series truncated at its second and third terms, re­
spectively, exhibit deviations setting in at small values 
of ;u2. Curve 10, representing eq 23, offers a much bet­
ter approximation than the corresponding curve for n = 
10 in Figure 4. It is to be observed that the range of v 
encompassed in these figures is large, going much be-

2 £ exp(-M
2(/-m

2)/6) (33) 
m = 1 

This function, computed from the values of {rm
i) for 

finite sequences as above, is plotted against ju2 in Figure 
6. Similar calculations for chain molecules other than 
polymethylene and comparisons with artificial models 
and with results of X-ray scattering by polymer solu­
tions will be presented in a later paper. 
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Relaxation Effects in Associating Electrolytes1 
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Abstract: The dissociation-recombination kinetics in associating electrolytes are shown to provide an additional 
mechanism for the relaxation of the asymmetric charge distributions produced in the ionic atmospheres by migra­
tion of the ions in an external field. The relaxation effects are reduced significantly (the Onsager relaxation field 
by as much as 23 %) when two conditions are satisfied: (1) the rate of ionic recombination is within two orders of 
magnitude of the diffusion-controlled rate, and (2) the lifetime of the associated species is at least comparable to the 
relaxation time of the ionic atmosphere. The theory of Debye and Falkenhagen for conductance and dielectric 
dispersion in alternating weak fields is modified to include this effect for associating binary electrolytes. The im­
portant limiting case of stationary weak fields is discussed in detail. 

Aweak electrolyte has been generally regarded as a 
solution of free ions in a solvent of neutral mole­

cules, whereby the recombined ion pairs would function 
as another neutral component of the solvent for the 
remaining free ions and play no special role in elec­
trolytic conduction. The theory of electrostatic inter­
action of ions has been applied in this spirit, assuming 
that the relaxation effects of the ionic atmospheres, as 

(1) This paper is based on the dissertation submitted by S. W. Pro­
vencher to the Faculty of the Graduate School of Yale University in 
partial fulfillment of the requirements for the Ph.D. degree, June 1967. 
All computations were performed at the Yale Computer Center with 
funds provided by Yale University from National Science Foundation 
Grant No. GP 4774. 

(2) National Science Foundation Graduate Fellow, 1964-1967. 

well as the electrophoretic effects and the modifications 
of chemical equilibrium, would be functions of the 
free ion concentrations only. 

We have looked into the possibility that the recom­
bination kinetics might provide an additional mecha­
nism for the relaxation of the asymmetric charge dis­
tributions produced in the ionic atmospheres by migra­
tion of the ions. We find that the relaxation effects 
are significantly reduced when two conditions are ful­
filled. First, the rate of recombination must be at least 
comparable to the fastest permitted by diffusion. 
Second, the lifetime of the associated species must be 
at least comparable to the relaxation time of the ionic 
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